Навигация
Основные темы:
Главная
ДНК
Функции гемоглобина
РНК
Механизм кооперации
Этапы биосинтеза ДНК

Дополнительные темы:
Аминокислоты
Терминация РНК
Белки
Строение ДНК
Аминокислоты

Состав белков.

2.1. Пептидная связь
Белки представляют собой нерегулярные полимеры, построенные из остатков -аминокислот, общую формулу которых в водном растворе при значениях pH близких к нейтральным можно записать как NH3+CHRCOO – . Остатки аминокислот в белках соеди-нены между собой амидной связью между -амино- и -карбоксильными группами. Пеп-тидная связь между двумя -аминокислотными остатками обычно называется пептидной связью, а полимеры, построенные из остатков -аминокислот, соединенных пептидными связями, называют полипептидами. Белок как биологически значимая структура может представлять собой как один полипептид, так и несколько полипептидов, образующих в результате нековалентных взаимодействий единый комплекс.

2.2. Элементный состав белков
Изучая химический состав белков, необходимо выяснить, во-первых, из каких хими-ческих элементов они состоят, во-вторых, - строение их мономеров. Для ответа на пер-вый вопрос определяют количественный и качественный состав химических элементов белка. Химический анализ показал наличие во всех белках углерода (50-55%), кислорода (21-23%), азота (15-17%), водорода (6-7%), серы (0,3-2,5%). В составе отдельных белков обнаружены также фосфор, йод, железо, медь и некоторые другие макро- и микроэлемен-ты, в различных, часто очень малых количествах.
Содержание основных химических элементов в белках может различаться, за ис-ключением азота, концентрация которого характеризуется наибольшим постоянством и в среднем составляет 16%. Кроме того, содержание азота в других органических веществах мало. В соответствии с этим было предложено определять количество белка по входяще-му в его состав азоту. Зная, что 1г азота содержится в 6,25 г белка, найденное количество азота умножают коэффициент 6,25 и получают количество белка.
Для определения химической природы мономеров белка необходимо решить две за-дачи: разделить белок на мономеры и выяснить их химический состав. Расщепление белка на его составные части достигается с помощью гидролиза – длительного кипячения белка с сильными минеральными кислотами (кислотный гидролиз) или основаниями (щелочной гидролиз). Наиболее часто применяется кипячение при 110  С с HCl в течение 24 ч. На следующем этапе разделяют вещества, входящие в состав гидролизата. Для этой цели применяют различные методы, чаще всего – хроматографию ( подробнее – глава “Методы исследования…”). Главным частью разделенных гидролизатов оказываются аминокисло-ты.

2.3. Аминокислоты
В настоящее время в различных объектах живой природы обнаружено до 200 раз-личных аминокислот. В организме человека их, например, около 60. Однако в состав бел-ков входят только 20 аминокислот, называемых иногда природными.
Аминокислоты – это органические кислоты, у которых атом водорода -углеродного атома замещен на аминогруппу – NH2. Следовательно, по химической природе это -аминокислоты с общей формулой:


R

H – C  – NH2

COOH
Из этой формулы видно, что в состав всех аминокислот входят следующие общие группировки: – CH2, – NH2, – COOH. Боковые же цепи (радикалы – R ) аминокислот различаются. Как видно из Приложения I химическая природа радикалов разнообразна: от атома водорода до циклических соединений. Именно радикалы определяют структур-ные и функциональные особенности аминокислот.
Все аминокислоты, кроме простейшей аминоуксусной к-ты глицина (NH3+CH2COO) имеют хиральный атом C и могут существовать в виде двух энантиомеров (оптических изомеров):
H H

C C

COO – COO –
NH3+ R R NH3+
L-изомер D-изомер

В состав всех изученных в настоящее время белков входят только аминокислоты L-ряда, у которых, если рассматривать хиральный атом со стороны атома H, группы NH3+, COO и радикал R расположены по часовой стрелке. Необходимость при построении биологически значимой полимерной молекулы строить ее из строго определенного энан-тиомера очевидна – из рацемической смеси двух энантиомеров получилась бы невообра-зимо сложная смесь диастереоизомеров. Вопрос, почему жизнь на Земле основана на бел-ках, построеных именно из L-, а не D--аминокислот, до сих пор остается интригующей загадкой. Следует отметить, что D-аминокислоты достаточно широко распространены в живой природе и, более того, входят в состав биологически значимых олигопептидов.
Из двадцати основных -аминокислот строятся белки, однако остальные, достаточно разнообразные аминокислоты образуются из этих 20 аминокислотных остатков уже в со-ставе белковой молекулы. Среди таких превращений следует в первую очередь отметить образование дисульфидных мостиков при окислении двух остатков цистеина в составе уже сформированных пептидных цепей. В результате образуется из двух остатков цис-теина остаток диаминодикарбоновой кислоты цистина (см. Приложение I). При этом возникает сшивка либо внутри одной полипептидной цепи, либо между двумя различны-ми цепями. В качестве небольшого белка, имеющего две полипептидные цепи, соединен-ный дисульфидными мостиками, а также сшивки внутри одной из полипептидных це-пей:

0


GIVEQCCASVCSLYQLENYCN

FVNQHLCGSHLVEALYLVCGERGFFYTPKA

Важным примером модификации аминокислотных остатков является превращение остатков пролина в остатки гидроксипролина:

N – CH – CO – N – CH – CO –

CH2 CH2 CH2 CH2

CH2 CHOH

Это превращение происходит, причем в значительном масштабе, при образовании важного белкового компонента соединительной ткани – коллагена.
Еще одним весьма важным видом модификации белков является фосфорилирование гидроксогрупп остатков серина, треонина и тирозина, например:
– NH – CH – CO – – NH – CH – CO –

CH2OH CH2OPO32 –
Аминокислоты в водном растворе находятся в ионизированном состоянии за счет диссоциации амино- и карбоксильных групп, входящих в состав радикалов. Другими сло-вами, они являются амфотерными соединениями и могут существовать либо как кислоты (доноры протонов), либо как основания (акцепторы доноров).
Все аминокислоты в зависимости от структуры разделены на несколько групп:
Ациклические. Моноаминомонокарбоновые аминокислоты имеют в своем составе одну аминную и одну карбоксильную группы, в водном растворе они нейтральны. Неко-торые из них имеют общие структурные особенности, что позволяет рассматривать их вместе:
1. Глицин и аланин. Глицин (гликокол или аминоуксусная к-та) является оптически неактивным – это единственная аминокислота, не имеющая энатиомеров. Глицин участвует в образовании нуклеиновых и желчных к-т, гема, необходим для обез-вреживания в печени токсичных продуктов. Аланин используется организмом в различных процессах обмена углеводов и энергии. Его изомер -аланин является составной частью витамина пантотеновой к-ты, коэнзима А (КоА), экстрактивных веществ мышц.
2. Серин и треонин. Они относятся к группе гидрооксикислот, т.к. имеют гидро-ксильную группу. Серин входит в состав различных ферментов, основного белка молока – казеина, а также в состав многих липопротеинов. Треонин участвует в биосинтезе белка, являясь незаменимой аминокислотой.
3. Цистеин и метионин. Аминокислоты, имеющие в составе атом серы. Значение цистеина определяется наличием в ее составе сульфгидрильной ( – SH) группы, которая придает ему способность легко окисляться и защищать организм о ве-ществ с высокой окислительной способностью (при лучевом поражении, отравле-нии фосфором). Метионин характеризуется наличием легко подвижной метильной группы, использующейся для синтеза важных соединений в организме (холина, креатина, тимина, адреналина и др.)
4. Валин, лейцин и изолейцин. Представляют собой разветвленные аминокислоты, ко-торые активно участвуют в обмене веществ и не синтезируются в организме.
Моноаминодикарбоновые аминокислоты имеют одну аминную и две карбоксильные группы и в водном растворе дают кислую реакцию. К ним относятся аспарагиновая и глу-таминовая к-ты, аспарагин и глутамин. Они входят в состав тормозных медиаторов нерв-ной системы.
Диаминомонокарбоновые аминокислоты в водном растворе имеют щелочную реак-цию за сет наличия двух аминных групп. Относящийся к ним лизин необходим для синте-за гистонов а также в ряд ферментов. Аргинин участвует в синтезе мочевины, креатина.
Циклические. Эти аминокислоты имеют в своем составе ароматическое или гетеро-циклическое ядро и, как правило, не синтезируется в организме человека и должны по-ступать с пищей. Они активно участвуют в разнообразных обменных процессах. Так фе-нил-аланин служит основным источником синтеза тирозина – предшественника ряда био-логически важных веществ: гормонов (тироксина, адреналина), некоторых пигментов. Триптофан помимо участия в синтезе белка, служит компонентом витамина PP, серото-нина, триптамина, ряда пигментов. Гистидин необходим для синтеза белков, является предшественником гистамина, влияющего на кровяное давление и секрецию желудочного сока.
Взято с сайта: Ролевые игры



Главная
 
Hosted by uCoz